How do you integrate #e^(3x)/(e^6x-36)^(1/2)dx#?

1 Answer
Mar 15, 2015

The answer is: #1/3ln(e^(3x)+sqrt(e^(6x)-36))+c#.

First of all I assume that there is an error in your writing: I think that #e^6x# would be #e^(6x)#.

Let's assume:

#e^(3x)=6coshtrArr3x=ln6coshtrArrx=1/3ln6coshtrArr#

#dx=1/3*(6sinht)/(6cosht)dt=1/3sinht/coshtdt#.

Our integral becomes:

#int(6cosht)/sqrt(36cosh^2t-36)*1/3sinht/coshtdt=2intsinht/(6sqrt(cosh^2t-1))dt=#

#=1/3intsinht/sinhtdt=1/3intdt=1/3t+c=(1)#.

Since #e^(3x)=6coshtrArrcosht=e^(3x)/6rArrt=arccosh(e^(3x)/6)#.

So:

#(1)=1/3arccosh(e^(3x)/6)+c#.

There is another way to write the solution, remembering the logarithmic expression of the function #y=arccoshx#, that is:

#y=ln(x+sqrt(x^2-1))#.

So:

#(1)=1/3ln(e^(3x)/6+sqrt(e^(6x)/36-1))+c=#

#=1/3ln((e^(3x)+sqrt(e^(6x)-36))/6)+c=#

#=1/3ln(e^(3x)+sqrt(e^(6x)-36))-1/3ln6+c=#

#=1/3ln(e^(3x)+sqrt(e^(6x)-36))+c#

because #-1/3ln6# is a number.