How do you identify the conic of # r = 2/(1 + 2 cosx)#?
2 Answers
it represents the equation of a hyperbola
Explanation:
We know that the cartesian coordinate
The given equation
This is the cartesian form of the given polar equation.It is obvious from the equation that it represents the equation of a hyperbola.
Rearranging, the form is
Explanation:
The polar equation of a conic referred to a focus as pole and the
straight line from the pole to the center of the conic as the initial line
(
rectum.
This is derived using the property that
'the distance from the focus = eccentricity X distance from the
(corresponding ) directrix.
For a hyperbola, the eccentricity
Now, the given equation can be rearranged to this standard form
The semi transverse axis b = a sqrt(e^2-1)=(2/3)sqrt 3. > a..