How do you identify (secx-tanx)^2?

1 Answer
May 4, 2017

The answer is =(1-sinx)/(1+sinx)

Explanation:

We need

sin^2x+cos^2x=1

secx=1/cosx

tanx=sinx/cosx

a^2-b^2=(a+b)(a-b)

Therefore,

(secx -tanx)^2

=(1/cosx-sinx/cosx)^2

=(1-sinx)^2/cos^2x

=(1-sinx)^2/(1-sin^2x)

=(1-sinx)^2/((1+sinx)(1-sinx))

=(1-sinx)/(1+sinx)