Given: y=(x^2-9x+20)/(2x)y=x2−9x+202x
First and foremost, the equation becomes undefined when the denominator is 0
Thus 2x!=0 => x!=0 larr "Asymptote"2x≠0⇒x≠0←Asymptote
The true behaviour can be determined if we carry out the division.
y=x/2-9/2+10/xy=x2−92+10x
color(blue)("Consider the case "lim_(x->0^("+"))
y=lim_(x->0^("+")) x/2-9/2+lim_(x->0^("+"))(10/x)
y=0-9/2+oo = oo
color(blue)("Consider the case "lim_(x->0^("-"))
y=lim_(x->0^("-")) x/2-9/2+lim_(x->0^("-"))(10/x)
y=0-9/2-oo = -oo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider the case " lim_(x->+oo) )
y = lim_(x->+oo)x/2-9/2+lim_(x->+oo)10/x
y=oo-9/2+0 = oo
color(brown)("Observe the this is of general form ")
color(brown)(y=1/2x-9/2 larr" Asymptote")
color(blue)("Consider the case " lim_(x->-oo) )
y = lim_(x->-oo)x/2-9/2+lim_(x->-oo)10/x
y=-oo-9/2+0 = -oo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Are there any "x" intercepts?")
Set y=0=1/2x +10/x-9/2
0=(x^2-9x+20 )/(2x)
0=x^2-9x+20
0=(x-9/2)^2+20-81/4
(x-9/2)^2=1/4
x=9/2+-1/2
x=4 and 5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~