How do you graph y=(x^2-9x+20)/(2x)y=x29x+202x using asymptotes, intercepts, end behavior?

1 Answer
May 13, 2018

See explanantion

Explanation:

Given: y=(x^2-9x+20)/(2x)y=x29x+202x

First and foremost, the equation becomes undefined when the denominator is 0

Thus 2x!=0 => x!=0 larr "Asymptote"2x0x0Asymptote

The true behaviour can be determined if we carry out the division.

y=x/2-9/2+10/xy=x292+10x

color(blue)("Consider the case "lim_(x->0^("+"))

y=lim_(x->0^("+")) x/2-9/2+lim_(x->0^("+"))(10/x)

y=0-9/2+oo = oo

color(blue)("Consider the case "lim_(x->0^("-"))

y=lim_(x->0^("-")) x/2-9/2+lim_(x->0^("-"))(10/x)

y=0-9/2-oo = -oo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider the case " lim_(x->+oo) )

y = lim_(x->+oo)x/2-9/2+lim_(x->+oo)10/x

y=oo-9/2+0 = oo

color(brown)("Observe the this is of general form ")
color(brown)(y=1/2x-9/2 larr" Asymptote")

color(blue)("Consider the case " lim_(x->-oo) )

y = lim_(x->-oo)x/2-9/2+lim_(x->-oo)10/x

y=-oo-9/2+0 = -oo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Are there any "x" intercepts?")

Set y=0=1/2x +10/x-9/2

0=(x^2-9x+20 )/(2x)

0=x^2-9x+20

0=(x-9/2)^2+20-81/4

(x-9/2)^2=1/4

x=9/2+-1/2

x=4 and 5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B