How do you graph #y=-3x+3# using a table?
1 Answer
See explanation.
Explanation:
Create a blank table with two columns. Label the first column
#[(ul(" "x" "),ul("-"3x+3)),(,),(,),(,),(,),(,)]#
Next, choose some values of
#[(ul(" "x" "),ul("-"3x+3)),("-"2,),("-"1,),(0,),(1,),(2,)]#
Then, find the matching values of
#color(white)="-"3color(red)x+3#
#="-"3(color(red)("-"2))+3#
#=6+3#
#=9#
Once the table is full, it should look something like this:
#[(ul(" "x" "),ul("-"3x+3)),("-"2,9),("-"1,6),(0,3),(1,0),(2,"-"3)]#
These are some
graph{((x+2)^2+(y-9)^2-0.025)((x+1)^2+(y-6)^2-0.025)((x)^2+(y-3)^2-0.025)((x-1)^2+(y)^2-0.025)((x-2)^2+(y+3)^2-0.025)=0 [-15.55, 15.63, -4.79, 10.8]}
From here, the line that passes through these points is easy to see. We simply connect the dots with a straight line to finish the job:
graph{(-3x+3-y)((x+2)^2+(y-9)^2-0.025)((x+1)^2+(y-6)^2-0.025)((x)^2+(y-3)^2-0.025)((x-1)^2+(y)^2-0.025)((x-2)^2+(y+3)^2-0.025)=0 [-15.55, 15.63, -4.79, 10.8]}
And we're done!