How do you graph the quadratic function and identify the vertex and axis of symmetry for y=1/2x^2+4x+5?

1 Answer
Jul 17, 2017

x_("intercpts")=-4+-sqrt(6)larr" Exact value"
y_("intercept")=5
Vertex ->(x,y)=(-4,-3)

Explanation:

color(blue)("The different way to find "x_("vertex"))

Write as: y=1/2(x^2+8x)+5

Axis of symmetry ->x_("vertex")=(-1/2)xx8= -4

y_("vertex")=1/2(-4)^2+4(-4)+5 = -3

Vertex->(x,y)=(-4,-3)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("The formula method for x-intercepts")

Given: y=1/2x^2+4x+5

y=ax^2+bx+c => x=(-b+-sqrt(b^2-4ac))/(2a)

This really is worth committing to memory.

Where a=1/2"; "b=4"; "c=5

x=(-4+-sqrt(4^2-4(1/2)(5)))/(2(1/2))

x=-4+-sqrt(6)larr" Exact value"

x~~-1.55 and -6.45 to 2 decimal places
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the vertex")

x_("vertex") is mid point of intercepts which is:

((-4-sqrt(6))+(-4+sqrt(6)))/2 =-4

by substitution y_("vertex")=-3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Determine the y-intercept")

It is the value of the constant c=5

Tony BTony B