How do you graph the quadratic function and identify the vertex and axis of symmetry for y=-x^2+4x-2y=x2+4x2?

1 Answer
Mar 21, 2017

Vertex->(x,y)=(2,2)(x,y)=(2,2)
Axis of symmetry ->x=2x=2

Explanation:

As the x^2x2 part is negative the graph is of general shape nn

The axis of symmetry coincides with x_("vertex")xvertex

color(blue)("Determine the vertex and axis of symmetry")Determine the vertex and axis of symmetry

Write as y=-1(xcolor(red)(-4)x)-2y=1(x4x)2

"Axis of symmetry "=x_("vertex")=(-1/2)xx(color(red)(-4)) = +2Axis of symmetry =xvertex=(12)×(4)=+2

By substitution:

y_("vertex")=-(2)^2+4(2)-2 = +2yvertex=(2)2+4(2)2=+2

Vertex->(x,y)=(2,2)(x,y)=(2,2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the y-intercept")Determine the y-intercept

Consider the given equation:" "=-x^2+4xcolor(magenta)(-2) =x2+4x2

y_("intercept")=color(magenta)(-2)yintercept=2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the x-intercept")Determine the x-intercept

Using y=ax^2+bx+c" where "x=(-b+-sqrt(b^2-4ac))/(2a)y=ax2+bx+c where x=b±b24ac2a

a=-1"; "b=+4"; "c=-2a=1; b=+4; c=2

x=(-4+-sqrt((4)^2-4(-1)(-2)))/(2(-1))x=4±(4)24(1)(2)2(1)

I will let you finish this bit.

Tony BTony B