As the x^2x2 part is negative the graph is of general shape nn∩
The axis of symmetry coincides with x_("vertex")xvertex
color(blue)("Determine the vertex and axis of symmetry")Determine the vertex and axis of symmetry
Write as y=-1(xcolor(red)(-4)x)-2y=−1(x−4x)−2
"Axis of symmetry "=x_("vertex")=(-1/2)xx(color(red)(-4)) = +2Axis of symmetry =xvertex=(−12)×(−4)=+2
By substitution:
y_("vertex")=-(2)^2+4(2)-2 = +2yvertex=−(2)2+4(2)−2=+2
Vertex->(x,y)=(2,2)→(x,y)=(2,2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the y-intercept")Determine the y-intercept
Consider the given equation:" "=-x^2+4xcolor(magenta)(-2) =−x2+4x−2
y_("intercept")=color(magenta)(-2)yintercept=−2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the x-intercept")Determine the x-intercept
Using y=ax^2+bx+c" where "x=(-b+-sqrt(b^2-4ac))/(2a)y=ax2+bx+c where x=−b±√b2−4ac2a
a=-1"; "b=+4"; "c=-2a=−1; b=+4; c=−2
x=(-4+-sqrt((4)^2-4(-1)(-2)))/(2(-1))x=−4±√(4)2−4(−1)(−2)2(−1)
I will let you finish this bit.
Tony B