As the #x^2# part is negative the graph is of general shape #nn#
The axis of symmetry coincides with #x_("vertex")#
#color(blue)("Determine the vertex and axis of symmetry")#
Write as #y=-1(xcolor(red)(-4)x)-2#
#"Axis of symmetry "=x_("vertex")=(-1/2)xx(color(red)(-4)) = +2#
By substitution:
#y_("vertex")=-(2)^2+4(2)-2 = +2#
Vertex#->(x,y)=(2,2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the y-intercept")#
Consider the given equation:#" "=-x^2+4xcolor(magenta)(-2)#
#y_("intercept")=color(magenta)(-2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the x-intercept")#
Using #y=ax^2+bx+c" where "x=(-b+-sqrt(b^2-4ac))/(2a)#
#a=-1"; "b=+4"; "c=-2#
#x=(-4+-sqrt((4)^2-4(-1)(-2)))/(2(-1))#
I will let you finish this bit.