13x^2+6sqrt3xy+7y^2-16=0 is equivalent to
((x),(y))^T((13,3sqrt(3)),(3sqrt(3),7))((x),(y)) - 16=0
Introducing a change of variables
((X),(Y)) = ((costheta, -Sintheta),(Sintheta, Costheta))((x),(y))
we get at
((X),(Y))^T((10 + 3 Cos2theta - 3 sqrt[3] Sin2theta,
3 (sqrt[3] Cos2theta + Sin2theta)),(3 (sqrt[3] Cos2theta + Sin2theta),
10 - 3 Cos2theta + 3 sqrt[3] Sin2theta))((X),(Y))-16=0
Choosing theta such that
3 (sqrt[3] Cos2theta + Sin2theta)=0
we have theta = pi/3 or theta = -pi/6
and the quadratic in this new set of coordinates reads
16X^2+4Y^2-16=0
or
4X^2+16Y^2-16=0
In both cases the quadratic is characterized as an ellipse.
Note. The quadratic kind can be determined computing the characteristic polynomial roots. In this case
M=((13,3sqrt(3)),(3sqrt(3),7))
has the characteristic polynomial
lambda^2-"trace"(M)lambda + det(M)=0
or
lambda^2-20lambda+64=0 with roots
lambda = {4, 16} characteririzing an ellipse.