How do you graph f(x)= (2x^2+5x-12)/(x+4)f(x)=2x2+5x12x+4?

1 Answer
Jul 1, 2015

Factor the numerator using the a*cac method. Cancel common terms in the numerator and denominator. Make a table of xx and yy values. Plot the points, and draw a straight line through the points.

Explanation:

Substitute yy for f(x)f(x).

y=(2x^2+5x-12)/(x+4)y=2x2+5x12x+4

Factor the numerator using the a*cac method.

2x^2+5x-122x2+5x12

ax^2+bx+cax2+bx+c

a=2;a=2; b=5;b=5; c=-12c=12

a*c=2*-12=-24ac=212=24

Find two numbers that when multiplied equal -2424 and when added equal 55.

The numbers -33 and 88 fit the criteria.

Rewrite 5x5x as -3x3x and 8x8x.

2x^2-3x+8x-122x23x+8x12

Group and factor.

(2x^2-3x)+(8x-12)(2x23x)+(8x12) =

x(2x-3)+4(2x-3)x(2x3)+4(2x3) =

(x+4)(2x-3)(x+4)(2x3)

Rewrite the numerator as (x+4)(2x-3)(x+4)(2x3).

y=((x+4)(2x-3))/(x+4)y=(x+4)(2x3)x+4

Cancel (x+4)(x+4).

y=(cancel(x+4)(2x-3))/cancel(x+4) =

y=2x-3

Make a table of x and y. Plot the points, and draw a line through the points.

Table of x and y values.
x=-2; y=-7
x=0; y=-3
x=2; y=1

graph{y=2x-3 [-11.3, 11.2, -7.56, 3.69]}