How do you graph and solve |3x+1| + |3-2x| =11?

1 Answer
Jan 7, 2017

x = -9/5 and x = 13/5

Explanation:

abs(3x+1)+abs(2x-3)=11=3x+1-3x+10 so
abs(3x+1)/(3x+1)+abs(2x-3)/(3x+1)=1+(10-3x)/(3x+1) or
pm1+abs(2x-3)/(3x+1)=1+(10-3x)/(3x+1)
Now we have two options:

a)
1+abs(2x-3)/(3x+1)=1+(10-3x)/(3x+1)->abs(2x-3)/(3x+1)=(10-3x)/(3x+1)

b)
-1+abs(2x-3)/(3x+1)=1+(10-3x)/(3x+1)->abs(2x-3)/(3x+1)=2+(10-3x)/(3x+1)

Following with a) we have

a-1)
abs(2x-3)=10-3x=2x-3-5x+13 or
abs(2x-3)/(2x-3)=1+(13-5x)/(2x-3) or
pm1=1+(13-5x)/(2x-3) with two options:

a-1-1)
1=1+(13-5x)/(2x-3)->13-5x=0->color(red)(x=13/5)

a-1-2)
-1=1+(13-5x)/(2x-3)->0=2+(13-5x)/(2x-3)->color(red)(x=7)

Now following with b)

abs(2x-3)/(3x+1)=2+(10-3x)/(3x+1)->abs(2x-3)=6x+2+10-3x so
abs(2x-3)=3x+12 then

b-1)
abs(2x-3)=2x-3+x+15->abs(2x-3)/(2x-3)=1+(x+15)/(2x-3) or
pm1=1+(x+15)/(2x-3) with two options

b-1-1)
1=1+(x+15)/(2x-3)->color(red)(x=-15)

b-1-2)
-1=1+(x+15)/(2x-3)->0=2+(x+15)/(2x-3)->color(red)(x=-9/5)

After checking the found values, we pick the feasible values x = -9/5 and x = 13/5

enter image source here