How do you give the six trigonometric function values of pi/3?
1 Answer
Aug 6, 2017
Explanation:
"using the right triangle with angles and sides"
pi/2,pi/6,pi/3larrcolor(red)" angles"
1,sqrt3,2larrcolor(red)" sides"
"in relation to "cos(pi/3)
1" is adjacent ",sqrt3" is opposite",2" is hypotenuse"
•color(white)(x)cos(pi/3)=1/2
•color(white)(x)sec(pi/3)=1/cos(pi/3)=1/(1/2)=2
•color(white)(x)sin(pi/3)=sqrt3/2
•color(white)(x)csc(pi/3)=1/sin(pi/3)=1/(sqrt3/2)=2/sqrt3
•color(white)(x)tan(pi/3)=sin(pi/3)/(cos(pi/3))=(sqrt3/2)/(1/2)=sqrt3
•color(white)(x)cot(pi/3)=1/tan(pi/3)=1/sqrt3