How do you find u=1/2v-w+2z given v=<4,-3,5>, w=<2,6,-1> and z=<3,0,4>?

2 Answers
May 19, 2017

u=<6,-15/2,23/2>

Explanation:

As v=<4,-3,5>, w=<2,6,-1> and z=<3,0,4>

u=1/2v-w+2z

=<(1/2xx4-2+2xx3),(1/2(-3)-6+2xx0),(1/2xx5-(-1)+2xx4)>

=<6,-15/2,23/2>

May 19, 2017

< 6,-15/2,23/2 >

Explanation:

"Notation" < x,y,z > -=((x),(y),(z))

To multiply a vector by a scalar quantity, multiply each component of the vector by the scalar.

color(red)(a)((x),(y),(z))=((color(red)(a)x),(color(red)(a)y),(color(red)(a)z))

To add/subtract vectors, add/subtract corresponding components of the vectors.

((x_1),(y_1),(z_1))+-((x_2),(y_2),(z_2))=((x_1+-x_2),(y_1+-y_2),(z_1+-z_2))

rArr1/2ulv-ulw+2ulz

=1/2((4),(-3),(5))-((2),(6),(-1))+2((3),(0),(4))

=((2),(-3/2),(5/2))-((2),(6),(-1))+((6),(0),(8))

=((6),(-15/2),(23/2))