How do you find two unit vectors parallel to vector a= [-4, -1, -6]?

1 Answer
Jun 19, 2018

(4/sqrt53,1/sqrt53,6/sqrt53) and (-4/sqrt53,-1/sqrt53,-6/sqrt53)

Explanation:

Consider the vector defined by +-veca/||veca||, where, ||veca|| is the

magnitude of veca!=vec0.

Here, ||veca||=sqrt{(-4)^2+(-1)^2+(-6)^2}=sqrt53.

So, (4/sqrt53,1/sqrt53,6/sqrt53) and (-4/sqrt53,-1/sqrt53,-6/sqrt53)

are the desired vectors.