How do you find two unit vectors orthogonal to A=(1, 3, 0) B =(2, 0, 5)?

1 Answer
Nov 15, 2016

Please read the explanation.

Explanation:

Begin by computing the cross product. I use a determinant:

barA xx barB = | (hati, hatj, hatk), (1, 3, 0), (2,0, 5) |

barA xx barB = hati|(3, 0),(0,5)| + hatj|(0,1),(5,2)| + hatk|(1,3),(2,0)|

barA xx barB = 15hati - 5hatj -6hatk

Let barC = 15hati - 5hatj -6hatk

The unit vector, hatC = barC/|barC|

|barC| = sqrt(15^2 + (-5^2) + (-6)^2)

|barC| = sqrt(286)

hatC = 15/sqrt(286)hati - 5/sqrt(286)hatj -6/sqrt(286)hatk

The only other vector that can be orthogonal to barA and barB is:

barB xx barA

Because barA xx barB = -(barB xx barA), the only other unit vector orthogonal to barA and barB is:

-hatC = -15/sqrt(286)hati + 5/sqrt(286)hatj +6/sqrt(286)hatk