How do you find two unit vectors orthogonal to a=⟨−1,2,1⟩ and b=⟨−4,0,−5⟩?

2 Answers
May 25, 2017

+-(-10/(7sqrt5),-9/(7sqrt5),8/(7sqrt5)).

Explanation:

We know that, vec x xx vec y is botto vec x and vec y.

Further, for vec v!=vec 0, +-vec v/||vec v|| are the unit vectors along vec v.

Now, vec a xx vec b =|(i,j,k),(-1,2,1),(-4,0,-5)|

=(-10-0)i-(5-(-4))j+(0-(-8)k,

:. vec a xx vecb=-10i-9j+8k=(-10,-9,8).

:. ||vec a xx vecb||=sqrt{(-10)^2+(-9)^2+8^2}=sqrt245=7sqrt5.

Therefore, +-(-10/(7sqrt5),-9/(7sqrt5),8/(7sqrt5)) are the desiredunit vectors.

May 25, 2017

hatc=+-sqrt5/35((-10),(-9),(8))

Explanation:

We need to find a vector, vecc, such that veccbotveca and veccbotvecb.

As such vecc * veca=0 and vecc*vecb=0

Let vecc=((x),(y),(z))

Then -x+2y+z=0 and -4x-5z=0

Let z=1

-x+2y=-1

-4x=5

x=-5/4

-(-5/4)-2y=-1

2y=-9/4

y=-9/8

vecc=+-1/8((-10),(-9),(8))

c=sqrt(x^2+y^2+z^z)

c=sqrt((-5/4)^2+(-9/8)^2+1)=(7sqrt5)/8

hatc=1/c vecc

hatc=8/(7sqrt5)xx+-1/8((-10),(-9),(8))

hatc=+-sqrt5/35((-10),(-9),(8))