How do you find three cube roots of 11?

1 Answer
Jun 26, 2017

Three cube roots of 11 are

11, (-1-isqrt3)/21i32 and (-1+isqrt3)/21+i32

Explanation:

Let x=root(3)1x=31, then x^3=1x3=1 or

x^3-1=0x31=0

or (x-1)(x^2+x+1)=0(x1)(x2+x+1)=0

Hence either x=1x=1

or x^2+x+1=0x2+x+1=0 and using quadratic formula

x=(-1+-sqrt(1-4xx1xx1))/2x=1±14×1×12

= (-1+-sqrt(-3))/21±32

= (-1+-isqrt3)/21±i32

Hence three cube roots of 11 are

11, (-1-isqrt3)/21i32 and (-1+isqrt3)/21+i32