How do you find the zeros of f(x)=(x^2+6x+9)/(x^2-9)?

1 Answer
Jun 9, 2018

x=-3

Explanation:

To find the zeros (roots or solutions) set y=0, in this case f(x)=0 and solve for x:

f(x)=(x^2+6x+9)/(x^2-9)

0=(x^2+6x+9)/(x^2-9)

(x^2-9)*0=(x^2+6x+9)

0=x^2+6x+9

factor:

(x+3)(x+3) =0

(x+3)^2 =0

The function has a double solution at x=-3

graph{(x^2+6x+9)/(x^2-9) [-15.33, 24.67, -7.52, 12.48]}