How do you find the volume of the solid generated by revolving this region about the y axis, x=y2 and x=y+2?

1 Answer
Sep 21, 2015

V=72π5

Explanation:

x1=y2
x2=y+2

V=πy2y1(x22x21)dy

y1,y2=?
x1=x2
y2=y+2
y2y2=0
y2y2=y22y+y2=y(y2)+y2=(y2)(y+1)=0

y1=1,y2=2

V=π21((y+2)2(y2)2)dy

V=π21(y2+4y+4y4)dy

V=π(y33+2y2+4yy55)21

V=π(83+8+8325+132+415)

V=72π5