How do you find the vertices and foci of #x^2/9-y^2/64=1#?

1 Answer
Dec 16, 2016

Please read the Hyperbola reference and the explanation (below).

Explanation:

The general form for a hyperbola with a horizontal transverse axis is:

#(x - h)^2/a^2 - (y - k)^2/b^2 = 1" [1]"#

Center: #(h, k)#
Vertices: #(h - a, k) and (h + a, k)#
Foci: #(h - sqrt(a^2 + b^2), k) and (h + sqrt(a^2 + b^2), k)#
Asymptotes: #y = -b/a(x - h) + k and y = b/a(x - h) + k#

Write the given equation in the form of equation [1]:

#(x - 0)^2/3^2 - (y - 0)^2/8^2 = 1" [2]"#

Vertices: #(-3, 0) and (3, 0)#
Foci: #(-sqrt(73), 0) and (sqrt(73), 0)#

Here is a graph with the vertices and the foci.
Desmos.com