How do you find the vertical, horizontal or slant asymptotes for #f(x)=(x+2)/sqrt(6x^2+5x+4) #?
1 Answer
Explanation:
Note that:
#6x^2+5x+4#
is in standard quadratic form with
This has discriminant
#Delta = b^2-4ac = (color(blue)(5))^2-4(color(blue)(6))(color(blue)(4)) = 25-96 = -71#
Since
So the denominator
So
Note that:
#lim_(x->+oo) f(x) = lim_(x->+oo) (x+2)/sqrt(6x^2+5x+4)#
#color(white)(lim_(x->+oo) f(x)) = lim_(x->+oo) (1+2/x)/sqrt(6+5/x+4/x^2)#
#color(white)(lim_(x->+oo) f(x)) = 1/sqrt(6)#
#color(white)(lim_(x->+oo) f(x)) = sqrt(6)/6#
#lim_(x->-oo) f(x) = lim_(x->-oo) (x+2)/sqrt(6x^2+5x+4)#
#color(white)(lim_(x->-oo) f(x)) = lim_(x->+oo) (-x+2)/sqrt(6x^2-5x+4#
#color(white)(lim_(x->-oo) f(x)) = lim_(x->+oo) (-1+2/x)/sqrt(6-5/x+4/x^2)#
#color(white)(lim_(x->-oo) f(x)) = -1/sqrt(6)#
#color(white)(lim_(x->-oo) f(x)) = -sqrt(6)/6#
So
That leaves no opportunity for slant asymptotes.
graph{(x+2)/sqrt(6x^2+5x+4) [-22, 22, -2.52, 2.48]}