How do you find the value of #tan 150#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer टासी श. · mimi Oct 17, 2015 #1/-sqrt3# Explanation: #tan(150)= tan(180-30)# or #tan(150)=tan(180+(-30))# #tan(150)=(tan(180)+tan(-30))/(1-tan(180.tan(-30)))# #tan(150)=(0+ sin(-30)/cos(-30))/(1-0)# #tan(150)=(1/2)/(-sqrt3/2)# #tan(150)=(1/2)* (2/-sqrt3)# #tan(150)=1/-sqrt3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 75255 views around the world You can reuse this answer Creative Commons License