How do you find the value of #csc ((5pi)/3)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. · Nghi N Mar 28, 2016 #- (2sqrt3)/3# Explanation: #csc ((5pi)/3) = 1/(sin ((5pi)/3)# Find #sin ((5pi)/3).# #sin ((5pi)/3) = sin (-pi/3 + 2pi) = sin (-pi/3) =# #= - sin (pi/3) = - sqrt3/2# Therefor, #csc ((5pi)/3) = 1/(sin) = - 2/sqrt3 = - (2sqrt3)/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 38516 views around the world You can reuse this answer Creative Commons License