How do you find the value of cos 210degrees- csc 300 degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Daniel L. Oct 11, 2015 cos210-csc300=sqrt(3)/6 Explanation: cos210-csc300=cos210-1/sin300=cos(180+30)-1/sin(360-60)= =-cos30-(1/(-sin60))=-cos30+1/sin60=-sqrt(3)/2+1/(sqrt(3)/2)= =-sqrt(3)/2+2/sqrt(3)=(-3+4)/(2sqrt(3))=1/(2sqrt(3))=sqrt(3)/6 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2505 views around the world You can reuse this answer Creative Commons License