How do you find the value of # cos ((13pi)/12)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k May 7, 2016 #=-1/2sqrt(1/2(sqrt3+1))# Explanation: #cos((13pi)/12)=cos(pi+pi/12)=-cos((pi)/12)# #=-sqrt(1/2(1+cos(2*pi/12)))=-sqrt(1/2(1+cos(pi/6)))# #=-sqrt(1/2(1+sqrt3/2))=-sqrt(1/8(4+2*sqrt3))# #=-sqrt(1/(2*2^2)((sqrt3)^2+2*sqrt3*1+1^2))# #=-sqrt(1/(2*2^2)(sqrt3+1)^2)# #=-1/2sqrt(1/2(sqrt3+1))# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2361 views around the world You can reuse this answer Creative Commons License