How do you find the unit vector parallel to the resultant of the vectors A= 2i - 6j -3k and B = 4i + 3j- k?

1 Answer
Aug 11, 2016

The Reqd. Unit Vector =(6/sqrt61,-3/sqrt61,-4/sqrt61).

Explanation:

Let a non-null vector vecx be given. Then, a unit vector parallel to vecx is

denoted by hatx and is defined by,

hatx=vecx/||vecx||

vecA=2hati-6hatj-3hatk=(2,-6,-3), &, vecB=(4,3,-1).

Hence, the Resultant of vecA and vecB, is vecA+vecB, & is,

vecA+vecB=(2,-6,-3)+(4,3,-1)=(2+4,-6+3,-3-1)=(6,-3,-4)

:. ||vecA+vecB||=sqrt{6^2+(-3)^2+(-4)^2}=sqrt61

Hence, the Reqd. Unit Vector =(vecA+vecB)/||vecA+vecB||

=1/sqrt61(6,-3,-4)=(6/sqrt61,-3/sqrt61,-4/sqrt61).