How do you find the unit vector in the direction of v: v=4i-2j?

1 Answer
Sep 9, 2016

(4 i - 2 j) / (2 sqrt(5))

Explanation:

We have: v = 4 i - 2 j

Unit vectors are of the form hat(u) = (u) / (|u|):

=> hat(v) = (v) / (|v|)

=> hat(v) = (4 i - 2 j) / (sqrt((4)^(2) + (- 2)^(2)))

=> hat(v) = (4 i - 2 j) / (sqrt(16 + 4))

=> hat(v) = (4 i - 2 j) / (sqrt(20))

=> hat(v) = (4 i - 2 j) / (2 sqrt(5))