How do you find the unit vector in the direction of the given vector u=<-2,2>?

1 Answer
Jan 19, 2017

=-i/(sqrt2)+j/(sqrt2) or<-1/(sqrt2),1/(sqrt2)>

Explanation:

|u| =sqrt((-2)^2+2^2)
|u| =sqrt(4+4)
|u| =sqrt(8)
|u| =sqrt(4*2)
|u| =2sqrt(2)

Unit Vector =1/|u|(-2i+2j)
=1/(2sqrt2)(-2i+2j)

=1/(cancel2sqrt2)*cancel2(-i+j)

=1/(sqrt2)(-i+j)

=-i/(sqrt2)+j/(sqrt2)