How do you find the sum of the unit vectors (9,7,-11) and (7,3,-2)?

1 Answer
Dec 7, 2016

<9/sqrt251+7/sqrt62, 7/sqrt251+3/sqrt62, -11/sqrt251-2/sqrt62>

Explanation:

Unit vector in the direction of the vector a is 1/|a|a.

So, the um of the unit vectors here is

1/sqrt(9^2+7^2+(-11)^2)<9, 7, -11>

+ 1/sqrt(7^2+3^2+(-2)^2)<7, 3, -2>

=<9/sqrt251+7/sqrt62, 7/sqrt251+3/sqrt62, -11/sqrt251-2/sqrt62>