How do you find the sum of the infinite geometric series given #1+2/3+4/9+...#?
1 Answer
Explanation:
The general term of any geometric series can be written in the form:
#a_n = a*r^(n-1)" "# for#n = 1, 2, 3,...#
where
In our case we have:
#a_n = 1*(2/3)^(n-1)" "# for#n = 1, 2, 3,...#
with initial term
The general formula for the infinite sum (proved below) is:
#sum_(n=1)^oo ar^(n-1) = a/(1-r)# when#abs(r) < 1#
So in our case:
#sum_(n=1)^oo color(blue)(1)*(color(purple)(2/3))^(n-1) = color(blue)(1)/(1-color(purple)(2/3)) = 1/(1/3) = 3#
Background
The general term of a geometric series can be written:
#a_n = a*r^(n-1)" "# for#n = 1, 2, 3,...#
where
Given such a series, we find:
#(1-r) sum_(n=1)^N ar^(n-1) = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = a + color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = a - ar^N#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = a(1 - r^N)#
Dividing both ends by
#color(blue)(sum_(n=1)^N ar^(n-1) = (a(1-r^N))/(1-r))#
If
#sum_(n=1)^oo ar^(n-1) = lim_(N->oo) sum_(n=1)^N ar^(n-1)#
#color(white)(sum_(n=1)^oo ar^(n-1)) = lim_(N->oo) (a(1-r^N))/(1-r)#
#color(white)(sum_(n=1)^oo ar^(n-1)) = a/(1-r)#
So we have the general formula for the infinite sum:
#color(blue)(sum_(n=1)^oo ar^(n-1) = a/(1-r))" "# when#color(blue)(abs(r) < 1)#