How do you find the solutions to #sin^-1x=sin^-1(1/x)#?
↳Redirected from
"How do you evaluate #sin^-1 (-sqrt3/2)#?"
2 Answers
Aug 22, 2016
The Soln. is
Explanation:
These roots satisfy the given eqn.
Hence, the Soln. is
Aug 22, 2016
Explanation:
arcsin x = arcsin (1/x)
The 2 solutions are:
sin x = 1, and
sin x = - 1 , and
Any other values of x will make the equations untrue.
a. sin x = 1 --> arc x = pi/2
b. sin x = - 1 --> arc x = (3pi)/2
Answers for (0, 2pi)
Check
arc x = pi/2 --> arcsin (1) = arcsin (1/1)
arc x = (3pi)/2 --> arcsin (-1) = arcsin (1/-1)