How do you find the sixth roots of 64i64i?

1 Answer
Sep 26, 2016

The sixth roots are:

+-(1/2(sqrt(6)+sqrt(2)) + 1/2(sqrt(6)-sqrt(2))i)±(12(6+2)+12(62)i)

+-(1/2(sqrt(6)-sqrt(2)) + 1/2(sqrt(6)+sqrt(2))i)±(12(62)+12(6+2)i)

+-(-sqrt(2) + sqrt(2)i)±(2+2i)

Explanation:

De Moivre's formula tells us that:

(cos theta + i sin theta)^n = cos n theta + i sin n theta(cosθ+isinθ)n=cosnθ+isinnθ

Hence if theta = pi/12θ=π12 we find:

(cos (pi/12) + i sin (pi/12))^6 = cos (pi/2) + i sin (pi/2) = 0 + i (1) = i(cos(π12)+isin(π12))6=cos(π2)+isin(π2)=0+i(1)=i

So cos (pi/12) = i sin (pi/12)cos(π12)=isin(π12) is a sixth root of ii.

We can form other sixth roots by adding any multiple of (2pi)/6 = pi/32π6=π3 to theta. So in general we find:

(cos ((1+4k)/12 pi) + i sin ((1+4k)/12 pi))^6 = cos (pi/2 + 2kpi) + i sin (pi/2 + 2kpi) = i(cos(1+4k12π)+isin(1+4k12π))6=cos(π2+2kπ)+isin(π2+2kπ)=i

Also we have:

(r(cos theta + i sin theta))^n = r^n (cos n theta + i sin theta)(r(cosθ+isinθ))n=rn(cosnθ+isinθ)

2^6 = 6426=64

Hence the sixth roots of 64i64i are:

2(cos ((1+4k)/12 pi) + i sin ((1+4k)/12 pi))" "2(cos(1+4k12π)+isin(1+4k12π)) for k = 0, 1, 2, 3, 4, 5k=0,1,2,3,4,5

You are probably aware that:

sin (pi/4) = cos (pi/4) = sqrt(2)/2sin(π4)=cos(π4)=22

sin (pi/6) = cos (pi/3) = 1/2sin(π6)=cos(π3)=12

cos (pi/6) = sin (pi/3) = sqrt(3)/2cos(π6)=sin(π3)=32

sin(alpha-beta) = sin alpha cos beta - sin beta cos alphasin(αβ)=sinαcosβsinβcosα

cos(alpha - beta) = cos alpha cos beta + sin alpha sin betacos(αβ)=cosαcosβ+sinαsinβ

So we find:

sin (pi/12) = sin (pi/3 - pi/4)sin(π12)=sin(π3π4)

color(white)(sin (pi/12)) = sin (pi/3) cos (pi/4) - sin (pi/4) cos (pi/3)sin(π12)=sin(π3)cos(π4)sin(π4)cos(π3)

color(white)(sin (pi/12)) = (sqrt(3)/2) (sqrt(2)/2) - (sqrt(2)/2) (1/2)sin(π12)=(32)(22)(22)(12)

color(white)(sin (pi/12)) = 1/4(sqrt(6)-sqrt(2))sin(π12)=14(62)

cos (pi/12) = cos (pi/3 - pi/4)cos(π12)=cos(π3π4)

color(white)(cos (pi/12)) = cos (pi/3) cos (pi/4) + sin (pi/3) sin (pi/4)cos(π12)=cos(π3)cos(π4)+sin(π3)sin(π4)

color(white)(cos (pi/12)) = (1/2) (sqrt(2)/2) + (sqrt(3)/2) (sqrt(2)/2)cos(π12)=(12)(22)+(32)(22)

color(white)(cos (pi/12)) = 1/4(sqrt(6)+sqrt(2))cos(π12)=14(6+2)

We also have:

sin ((5pi)/12) = sin (pi/2 - pi/12) = cos (pi/12) = 1/4(sqrt(6)+sqrt(2))sin(5π12)=sin(π2π12)=cos(π12)=14(6+2)

cos ((5pi)/12) = cos (pi/2 - pi/12) = sin (pi/12) = 1/4(sqrt(6)-sqrt(2))cos(5π12)=cos(π2π12)=sin(π12)=14(62)

So all the sixth roots are:

+-2(cos (pi/12) + i sin (pi/12)) = +-(1/2(sqrt(6)+sqrt(2)) + 1/2(sqrt(6)-sqrt(2))i)±2(cos(π12)+isin(π12))=±(12(6+2)+12(62)i)

+-2(cos ((5pi)/12) + i sin ((5pi)/12)) = +-(1/2(sqrt(6)-sqrt(2)) + 1/2(sqrt(6)+sqrt(2))i)±2(cos(5π12)+isin(5π12))=±(12(62)+12(6+2)i)

+-2(cos ((9pi)/12) + i sin ((9pi)/12)) = +-(-sqrt(2) + sqrt(2)i)±2(cos(9π12)+isin(9π12))=±(2+2i)