How do you find the six trigonometric functions of (7pi)/6 degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 7, 2015 Trig unit circle: sin ((7pi)/6) = sin (pi/6 + pi) = -sin (pi/6) = -1/2 (trig table) cos ((7pi)/6) = cos (pi/6 + pi) = - cos pi/6 = -(sqr3)/2 tan ((7pi)/6) = (1/2).(2/(sqr3)) = 1/(sqr3) = (sqr3)/3 cot ((7pi)/6) = sqr3 sec (7pi/6) = -2/(sqr3) = (-2sqr3)/3 csc (pi/6) = -2 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 23574 views around the world You can reuse this answer Creative Commons License