How do you fInd the sine, cosine, and tangent of (11pi)/4 radians?

1 Answer

1/\sqrt2,\ -1/\sqrt2 \ \ &\ \ -1

Explanation:

\sin({11\pi}/4)=\sin(2\pi+{3\pi}/4)=\sin({3\pi}/4)=\sin(\pi-{\pi}/4)=\sin(\pi/4)=1/\sqrt2

\cos({11\pi}/4)=\cos(2\pi+{3\pi}/4)=\cos({3\pi}/4)=\cos(\pi-{\pi}/4)=-\cos(\pi/4)=-1/\sqrt2

\tan({11\pi}/4)=\tan(2\pi+{3\pi}/4)=\tan({3\pi}/4)=\sin(\pi-{\pi}/4)=-\tan(\pi/4)=-1