How do you find the radius of convergence Sigma (n^nx^n)/(ln(lnn))^n from n=[3,oo)?
1 Answer
The interval of convergence is the single value
Explanation:
sum_(n=3)^oo(n^nx^n)/(ln(lnn))^n=sum_(n=3)^oo((nx)/ln(lnn))^n
The root test says that the series
So, we will take
L=lim_(nrarroo)rootnabs(a_n)=lim_(nrarroo)rootnabs(((nx)/ln(lnn))^n)
color(white)L=lim_(nrarroo)abs((nx)/ln(lnn))
Moving the
L=absxlim_(nrarroo)abs(n/ln(lnn))
Since
The only time, then, when
Thus, the interval of convergence is the single value