How do you find the radius of convergence Sigma n^n/(n!) x^n from n=[1,oo)?

1 Answer
Mar 3, 2017

R=1/e

Explanation:

Use the ratio test, which states that suma_n converges if L<1, where L=lim_(nrarroo)abs(a_(n+1)/a_n). Here,

L=lim_(nrarroo)abs((n+1)^(n+1)/((n+1)!)x^(n+1)(n!)/n^n1/x^n)

Simplifying:

L=lim_(nrarroo)abs((n+1)^(n+1)/n^n((n!)/((n+1)n!))x^(n+1)/x^n)

L=lim_(nrarroo)abs((n+1)^(n+1)/(n+1)1/n^nx)

Bringing the x out of the limit, since the limit depends only on how n changes:

L=absxlim_(nrarroo)abs((n+1)^n/n^n)

L=absxlim_(nrarroo)abs(((n+1)/n)^n)

This is a well-known limit that approaches e:

L=eabsx

The posted series will converge when L<1, so the interval of convergence will be on when:

eabsx<1

absx<1/e

Thus the radius of convergence is R=1/e, centered at x=0.