How do you find the radius of convergence Sigma n^n/(n!) x^n from n=[1,oo)?
1 Answer
Mar 3, 2017
Explanation:
Use the ratio test, which states that
L=lim_(nrarroo)abs((n+1)^(n+1)/((n+1)!)x^(n+1)(n!)/n^n1/x^n)
Simplifying:
L=lim_(nrarroo)abs((n+1)^(n+1)/n^n((n!)/((n+1)n!))x^(n+1)/x^n)
L=lim_(nrarroo)abs((n+1)^(n+1)/(n+1)1/n^nx)
Bringing the
L=absxlim_(nrarroo)abs((n+1)^n/n^n)
L=absxlim_(nrarroo)abs(((n+1)/n)^n)
This is a well-known limit that approaches
L=eabsx
The posted series will converge when
eabsx<1
absx<1/e
Thus the radius of convergence is