How do you find the radius of convergence Sigma (n^(2n))/((2n)!) x^n from n=[1,oo)?

1 Answer
Jan 11, 2017

The radius of convergence of the series:

sum_(n=1)^oo n^(2n)/((2n)!)x^n

is R=4/e^2

Explanation:

We have the series:

sum_(n=1)^oo a_n = sum_(n=1)^oo n^(2n)/((2n)!)x^n

We can apply the ratio test, to verify for which values of x, if any, we have:

lim_(n->oo) abs(a_(n+1)/a_n) < 1

a_(n+1)/a_n = ((n+1)^(2(n+1))/((2(n+1))!)x^(n+1)) /(n^(2n)/((2n)!)x^n)

Now we note that:

(i)x^(n+1)/x^n = x

(ii) ((2n)!)/((2(n+1))!) = ((2n)!)/((2n+2)(2n+1)((2n)!)) = 1/((2n+2)(2n+1)) = 1/(2(n+1)(2n+1))

(iii) (n+1)^(2(n+1))/n^(2n) = (n+1)^2(n+1)^(2n)/n^(2n) = (n+1)^2 ((n+1)/n)^(2n)

So that we can express the ratio as:

a_(n+1)/a_n = (n+1)^2/(2(n+1)(2n+1)) ((n+1)/n)^(2n)x = (n+1)/(2(2n+1)) (1+1/n)^(2n)x

Let us analyze the factors one by one:

lim_(n->oo) (n+1)/(2(2n+1)) = 1/4

lim_(n->oo) (1+1/n)^(2n) = lim_(n->oo) ((1+1/n) ^n )^2 = e^2

Finally we have:

lim_(n->oo) abs (a_(n+1)/a_n) = e^2/4 abs(x) < 1 => abs(x) < 4/e^2

so the radius of convergence is: R=4/e^2