How do you find the radius of convergence Sigma 3^nx^(2n) from n=[1,oo)?

1 Answer
Mar 1, 2017

1/sqrt3

Explanation:

sum_(n=1)^oo3^nx^(2n)

Recall that the series sum_(n=1)^ooa_n converges if lim_(nrarroo)abs(a_(n+1)/a_n)<1 through the ratio test.

We can take a_n=3^nx^(2n) and apply the ratio test and find the values of x for which the properties of convergence are satisfied (when the absolute value of the ratio is less than 1).

lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs((3^(n+1)x^(2(n+1)))/(3^nx^(2n)))<1

color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)lim_(nrarroo)abs((3^(n+1)x^(2n+2))/(3^nx^(2n)))<1

color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)lim_(nrarroo)abs(3x^2)<1

n is no longer a part of the limit, so we can drop that part. Furthermore, 3x^2>0 for all Real values of x, so the absolute value bars are unnecessary.

color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)3x^2-1<0

color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)(sqrt3x+1)(sqrt3x-1)<0

This is true on -1/sqrt3 < x < 1/sqrt3.

Since this is the interval of convergence (for this problem we don't need to check the bounds), we see that the radius of convergence R is 1/sqrt3.