How do you find the magnitude of YZ given Y(5,0) and Z(7,6)?
1 Answer
bb(vec(YZ)) = ( (2), (6) ) \ \ and\ \ abs(bb(vec(YZ))) = 2sqrt(10)
Explanation:
We have
So in vector notation we can write:
bb(vec(OY)) = ( (5), (0) ) \ \ and\ \ bb(vec(OZ)) = ( (7), (6) )
We can calculate
Method 1:
Using the coordinates along, we can apply pythagoras theorem:
YZ^2 = (7-5)^2 + (6-0)^2
\ \ \ \ \ \ \ = 2^2 + 6^2
\ \ \ \ \ \ \ = 4+36
\ \ \ \ \ \ \ = 40
And so
Method 2:
Using vector notation we can calculate the vector
We have:
bb(vec(YZ)) = bb(vec(OZ)) - bb(vec(OY))
\ \ \ \ \ \ = ( (7), (6) ) - ( (5), (0) )
\ \ \ \ \ \ = ( (7-5), (6-0) )
\ \ \ \ \ \ = ( (2), (6) )
And so:
abs(bb(vec(YZ))) = sqrt(2^2+6^2)
\ \ \ \ \ \ \ \ = 2sqrt(10) , as before.