How do you find the inverse of #f(x)=(2x-3)/(x+1)#?

1 Answer
Dec 6, 2015

#f^-1(x)=-(x+3)/(x-2)#

Explanation:

Write as: #y=(2x-3)/(x+1)#

Switch #x# and #y# and then solve for #y#.

#x=(2y-3)/(y+1)#

#x(y+1)=2y-3#

#xy+x=2y-3#

#xy-2y=-x-3#

#y(x-2)=-(x+3)#

#y=-(x+3)/(x-2)#

The #y# can be replaced by #f^-1(x)#, which simply denotes an inverse function:

#f^-1(x)=-(x+3)/(x-2)#