How do you find the inverse of #A=##((1, 2, 3), (0, 1, 4), (0,0,8))#?
1 Answer
Explanation:
Given:
#((1, 2, 3), (0, 1, 4), (0, 0, 8))#
First add an extra three columns like an identity matrix to form an augmented matrix:
#((1, 2, 3, color(blue)(1), color(blue)(0), color(blue)(0)), (0, 1, 4, color(blue)(0), color(blue)(1), color(blue)(0)), (0, 0, 8, color(blue)(0), color(blue)(0), color(blue)(1)))#
Then perform a sequence of row operations to make the left hand
Subtract
#((1, 0, -5, color(blue)(1), color(blue)(-2), color(blue)(0)), (0, 1, 4, color(blue)(0), color(blue)(1), color(blue)(0)), (0, 0, 8, color(blue)(0), color(blue)(0), color(blue)(1)))#
Divide
#((1, 0, -5, color(blue)(1), color(blue)(-2), color(blue)(0)), (0, 1, 4, color(blue)(0), color(blue)(1), color(blue)(0)), (0, 0, 1, color(blue)(0), color(blue)(0), color(blue)(1/8)))#
Add
#((1, 0, 0, color(blue)(1), color(blue)(-2), color(blue)(5/8)), (0, 1, 4, color(blue)(0), color(blue)(1), color(blue)(0)), (0, 0, 1, color(blue)(0), color(blue)(0), color(blue)(1/8)))#
Subtract
#((1, 0, 0, color(blue)(1), color(blue)(-2), color(blue)(5/8)), (0, 1, 0, color(blue)(0), color(blue)(1), color(blue)(-1/2)), (0, 0, 1, color(blue)(0), color(blue)(0), color(blue)(1/8)))#
Now the left hand
#((color(blue)(1), color(blue)(-2), color(blue)(5/8)), (color(blue)(0), color(blue)(1), color(blue)(-1/2)), (color(blue)(0), color(blue)(0), color(blue)(1/8)))#
This method works for matrices of any size.