How do you find the inverse function of: y=x^2+2x-15y=x2+2x15 for x>=-1x1?

1 Answer
Oct 7, 2017

color(blue)(f^-1(x)=sqrt(x-16)-1)f1(x)=x161

Explanation:

y = x^2+2x-15y=x2+2x15

Get all terms containing variable on one side:

x^2+2x = y+15x2+2x=y+15

Complete the square on the left side:

(x^2+2x +(1)^2)-(1)^2 = y +15(x2+2x+(1)2)(1)2=y+15

(x^2+2x +(1)^2) = y +16(x2+2x+(1)2)=y+16

(x+1)^2= y+16(x+1)2=y+16

Taking roots:

x+1=+-sqrt(y-16)=> x = sqrt(y-16)-1 and x= -sqrt(y-16)-1x+1=±y16x=y161andx=y161

f^-1(x)=-sqrt(x-16)-1f1(x)=x161 domain {x in RR : 16<=x}

f^-1(x)=sqrt(x-16)-1 domain {x in RR : 16<=x}

Range of color(blue)(f^-1(x)=sqrt(x-16)-1)

color(blue)([-1 , oo))

Range of f^-1(x)=-sqrt(x-16)-1

(-oo , -1 ]