How do you find the interval of convergence Sigma (x-5)^n/(n!) from n=[0,oo)?

1 Answer
Mar 5, 2017

The series:

sum_(n=0)^oo (x-5)^n/(n!)

is convergent for any x in RR

Explanation:

Apply the ratio test:

lim_(n->oo) abs(a_(n+1)/a_n) = lim_(n->oo) abs ( ( (x-5)^(n+1)/((n+1)!))/ ((x-5)^n/(n!)))

lim_(n->oo) abs(a_(n+1)/a_n) = lim_(n->oo) abs ( (x-5)^(n+1)/(x-5)^n) (n!)/((n+1)!)

lim_(n->oo) abs(a_(n+1)/a_n) = lim_(n->oo) abs (x-5) /(n+1) = 0

So the series is convergent for any x in RR