How do you find the interval of convergence Sigma x^(2n)/(n*5^n) from n=[1,oo)?

1 Answer
Apr 4, 2017

-sqrt5lt=xltsqrt5

Explanation:

Find the ratio abs(a_(n+1)/a_n) for the series suma_n:

abs(a_(n+1)/a_n)=abs(x^(2(n+1))/((n+1)5^(n+1))((n(5^n))/x^(2n)))=abs(x^2/5(n/(n+1)))

The series converges if lim_(nrarroo)abs(a_(n+1)/a_n)<1.

lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs(x^2/5(n/(n+1)))=x^2/5lim_(nrarroo)abs(n/(n+1))=x^2/5

So the series is convergent for

x^2/5<1

x^2-5<0

(x-sqrt5)(x+sqrt5)<0

-sqrt5 < x < sqrt5

Test both these endpoints by plugging them into the original series expression. Note that x=sqrt5 gives the divergent series sum_(n=1)^oo 1/n, whereas x=-sqrt5 gives the conditionally convergent series sum_(n=1)^oo(-1)^n/n. Thus, x=-sqrt5 is included in the interval:

-sqrt5lt=xltsqrt5