How do you find the interval of convergence Sigma (3^n(x-4)^(2n))/n^2 from n=[1,oo)?
1 Answer
Explanation:
Where
=3^(n+1)/3^n((x-4)^(2n+2)/(x-4)^(2n))n^2/(n+1)^2
=3(x-4)^2(n/(n+1))^2
And:
=3(x-4)^2lim_(nrarroo)abs((n/(n+1))^2)
The limit approaches
=3(x-4)^2
Through the ratio test, the series converges when
3(x-4)^2<1
-1/sqrt3 < x-4 < 1/sqrt3
4-1/sqrt3 < x < 4+1/sqrt3
Test the intervals to see if the integral converges at the extremes:
At
sum_(n=1)^oo(3^n((4-1/sqrt3)-4)^(2n))/n^2=sum_(n=1)^oo(3^n(-1/sqrt3)^(2n))/n^2
=sum_(n=1)^oo(3^n(-1)^(2n)(1/sqrt3)^(2n))/n^2=sum_(n=1)^oo(3^n(1/3^n))/n^2=sum_(n=1)^oo1/n^2
Which converges through the p-series test, so
At
sum_(n=1)^oo(3^n((4+1/sqrt3)-4)^(2n))/n^2=sum_(n=1)^oo(3^n(1/sqrt3)^(2n))/n^2=sum_(n=1)^oo1/n^2
Which converges as well. So the interval of convergence is:
4-1/sqrt3 <= x <= 4+1/sqrt3