How do you find the interval of convergence Sigma (3^n(x-4)^(2n))/n^2 from n=[1,oo)?

1 Answer
May 12, 2017

4-1/sqrt3 <= x <= 4+1/sqrt3

Explanation:

Where a_n=(3^n(x-4)^(2n))/n^2, find the ratio a_(n+1)/a_n:

a_(n+1)/a_n=(3^(n+1)(x-4)^(2n+2))/(n+1)^2*n^2/(3^n(x-4)^(2n))

=3^(n+1)/3^n((x-4)^(2n+2)/(x-4)^(2n))n^2/(n+1)^2

=3(x-4)^2(n/(n+1))^2

And:

lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs(3(x-4)^2(n/(n+1))^2)

=3(x-4)^2lim_(nrarroo)abs((n/(n+1))^2)

The limit approaches 1:

=3(x-4)^2

Through the ratio test, the series converges when lim_(nrarroo)abs(a_(n+1)/a_n)<1:

3(x-4)^2<1

-1/sqrt3 < x-4 < 1/sqrt3

4-1/sqrt3 < x < 4+1/sqrt3

Test the intervals to see if the integral converges at the extremes:

At x=4-1/sqrt3, the series is:

sum_(n=1)^oo(3^n((4-1/sqrt3)-4)^(2n))/n^2=sum_(n=1)^oo(3^n(-1/sqrt3)^(2n))/n^2

=sum_(n=1)^oo(3^n(-1)^(2n)(1/sqrt3)^(2n))/n^2=sum_(n=1)^oo(3^n(1/3^n))/n^2=sum_(n=1)^oo1/n^2

Which converges through the p-series test, so x=4-1/sqrt3 is included in the interval of convergence.

At x=4+1/sqrt3:

sum_(n=1)^oo(3^n((4+1/sqrt3)-4)^(2n))/n^2=sum_(n=1)^oo(3^n(1/sqrt3)^(2n))/n^2=sum_(n=1)^oo1/n^2

Which converges as well. So the interval of convergence is:

4-1/sqrt3 <= x <= 4+1/sqrt3