How do you find the integral of (sin(5x))(5cos(5x))2(sin(5x))(5cos(5x))2?

1 Answer
Jan 31, 2015

The answer is: -1/2cos10x+c12cos10x+c.

The double-angle formula says:

sin(2alpha)=2sinalphacosalpha)sin(2α)=2sinαcosα) .

So: 2sin5xcos5x=sin10x2sin5xcos5x=sin10x.

Than the integral becomes:

int5sin10xdx=1/2int10sin10xdx=-1/2cos10x+c5sin10xdx=1210sin10xdx=12cos10x+c,

where I used the integration formula:

intsinf(x)f'(x)dx=-cosf(x)+c.