How do you find the integral of #int 4/(1+9x^2)dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer sjc Mar 18, 2018 #4/3tan^(-1)(3x)+c# Explanation: #int4/(1+9x^2)dx# substitute #9x^2=tan^2u# #=>3x=tanu--(1)# #=>3dx=sec^2udu# #int4/(1+9x^2)dx=4int1/(1+tan^2u)xx(sec^2udu)/3# #=4/3intcancel((sec^2u)/(1+tan^2u))du# #I=4/3intdu=4/3u+c# #(1)rarru=tan^(-1)(3x)# #:.I=4/3tan^(-1)(3x)+c# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 3502 views around the world You can reuse this answer Creative Commons License