How do you find the integral of #int 17/(16+x^2)dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Roy E. · mason m Dec 9, 2016 #17/4 arctan(x/4)+C#. Standard form: #int1/(a^2+x^2)dx=(1/a)arctan (x/a)+C# Explanation: Alternatively substitute #x=4tan u# and use #1+tan^2u=sec^2u# giving the integral as #int (17 xx 4)sec^2 u/(16 sec^2 u)du# and hence the answer. Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1429 views around the world You can reuse this answer Creative Commons License