How do you find the integral of #int 1/(xsqrt(4x^2-1)dx#?

1 Answer
Jan 26, 2017

The answer is #=arctan(sqrt(4x^2-1)) + C#

Explanation:

Let's do this integral by substitution

Let #u=sqrt(4x^2-1)#

#(du)/dx=1/(2sqrt(4x^2-1))*8x=(4x)/(sqrt(4x^2-1))#

Also,

#u^2=4x^2-1#

#4x^2=u^2+1#

Therefore,

#int(dx)/(xsqrt(4x^2-1))=int(cancelsqrt(4x^2-1)du)/(4x*x*cancelsqrt(4x^2-1))#

#=int(du)/(u^2+1)#

Let #u=tantheta#

#u^2+1=sec^2theta#

#du=sec^2theta d theta#

Therefore,

#int(du)/(u^2+1)=int(sec^2theta d theta)/(sec^2 theta)#

#intd theta=theta=arctanu#

So,

#int(dx)/(xsqrt(4x^2-1))=arctan(sqrt(4x^2-1)) + C#