How do you find the Integral of #dx/sqrt(x^2+16)#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Jim H Mar 30, 2015 #int (dx)/ sqrt(x^2+16) dx = int 1/(4sqrt((x/4)^2+1)) dx# #=int 1/(sqrt((x/4)^2+1))( 1/4)dx # #u = x/4#, #du=1/4 dx# and #int 1/sqrt(u^2+1) du=sinh^(-1) u +C# So #int (dx)/ sqrt(x^2+16) dx = sinh^(-1) (x/4) +C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 5340 views around the world You can reuse this answer Creative Commons License