How do you find the inner product and state whether the vectors are perpendicular given <4,5,1>*<-1,-2,3>?

1 Answer
Jan 14, 2017

-11, and not perpendicular

Explanation:

The inner product ( or scalar dot product) of wo vectors

veca=((a_1),(a_2),(a_3))

vecb=((b_1),(b_2),(b_3))

is defined as:

veca.vecb=|veca||vecb|costheta" " where theta is the angle bewteen the vectors.

and can be calculated using the result

veca.vecb=a_1b_1+a_2b_2+a_3b_3

so for the vectors in this question we have;

veca=((4),(5),(1))

vecb=((-1),(-2),(3))

veca.vecb=((4),(5),(1)).((-1),(-2),(3))

veca.vecb=4xx(-1)+5xx(-2)+1xx3

veca.vecb=-4-10+3=-11

for the vectors to be perpendicular ie. theta=90^0," "costheta=0

=>veca.vecb=0

in this case veca.vecb!=0, :." "not perpendicular